A Molecular Reexamination of Diploid Hybrid Speciation of Solanum raphanifolium

David M. Spooner; Kenneth J. Sytsma; James F. Smith

Stable URL:
http://links.jstor.org/sici?sici=0014-3820%28199105%2945%3A3%3C757%3AAMRODH%3E2.0.CO%3B2-K

Evolution is currently published by Society for the Study of Evolution.
A MOLECULAR REEXAMINATION OF DIPLOID HYBRID SPECIATION OF
SOLANUM RAPHANIFOLIUM^6

DAVID M. Spooner,1 KENNETH J. SYTSMA,2 AND JAMES F. SMITH3

1Cooperative Investigation of the USDA, ARS, and the Department of Botany,
University of Wisconsin–Madison USA
2Vegetable Crops Research Unit, Agricultural Research Service, USDA, Department of Horticulture,
University of Wisconsin–Madison USA
3Department of Botany, University of Wisconsin–Madison, Madison, WI 53706 USA

Key words.—Chloroplast DNA, hybridization, phylogenetics, ribosomal DNA, Solanum sect. Petota.

Received November 28, 1989. Accepted September 4, 1990.

Interspecific hybridization has long been the focus of intensive study in many groups of plants. Since the pioneering work of Anderson (1949), hybridization has been implicated in the formation of sporadic, nonviable, "accidental" hybrids, introgressive hybridization, and the production of new species (Raven, 1976, 1980; Grant, 1981). Hybrid speciation at the diploid level presents a special case where the immediate and potentially strong isolating mechanism provided by allopolyplody that separates the newly derived hybrid from its parents is absent. Diploid hybridization hypotheses have invoked a number of isolating mechanisms to maintain the integrity of the newly formed species such as ecogeographical, genetic, or mechanical isolation mechanisms (Levin, 1978; Grant, 1981). Most of these hybridization hypotheses were initially inferred on the basis of intermediate morphology and distributional data, but many have been further tested by artificial crosses, cytotaxonomic data, and secondary chemistry. The strengths and weaknesses of these methods have been pointed out by various workers (Gottlieb, 1972; Gallego and Gottlieb, 1982; Crawford, 1983; Rieseberg et al., 1988). The major problems with morphological, and to a lesser extent with cytotaxonomic and secondary chemical data, are our present ignorance of their genetic basis and our resulting inability to reliably distinguish between competing hypotheses of hybridization, convergent evolution, retention of ancestral characters, and phenotypic plasticity (Rieseberg et al., 1988; Sytsma, 1989).

Recent work with genetically more precise isozyme and DNA characters have provided new insights into hybridization hypotheses, with some supported (Roose and Gottlieb, 1976; Gallego and Gottlieb, 1982; Palmer et al., 1983; Solits and Solits, 1986; Dooley et al., 1984; Warwick et al., 1989; Rieseberg et al., 1990) and some questioned or rejected (Rieseberg et al., 1988, 1990; Crawford and Ornduff, 1989). Molecular data also have indicated hybridization where it previously has not been suspected (Palmer et al., 1983; Smith, 1988; Doebly, 1989; Smith and Sytsma, 1990). Additionally, molecular data have been useful in documenting that natural hybridization does not always lead to speciation (Rick, 1974; Levin, 1975; Bell and Lester, 1978; Doebly et al., 1984; Dooley et al., 1985; Palmer et al., 1985; Solits and Solits, 1986; Dooley and Doyle, 1988; Dooley and Brown, 1989).

Solanum sect. Petota, the potato and its wild relatives, is a group where natural hybridization and hybrid speciation has been hypothesized to be prevalent (Hawkes, 1958, 1962; Ugent, 1970a; Hawkes, 1990). Hawkes (1990) includes 232 species in the group, which he divides into 21 taxonomic series. The species are widely distributed throughout the Americas from southwestern Nebraska to southern Chile. Natural hybrids are believed to be quite common in some areas. For example, Hawkes and Hjerting (1969) state that 9.5% of the collections they examined from Argentina, Brazil, Paraguay, and Uruguay represented hybrids. Although there are well-developed sterility barriers between some species (Grun, 1961; Grun et al., 1962, 1977; Hawkes, 1958, 1981; Johnston and Hanneman, 1982), the majority of species can cross naturally or artificially. These hybrids are highly fertile, at least in the F1 generation, even in many interspecies crosses (Hawkes and Hjerting, 1969, 1989).

Solanum raphanifolium (ser. Megistacroloba) was hypothesized by Ugent (1970b) to be a recent stabilized diploid hybrid species between S. canasense (ser. Tuberosa) and S. megistacrolobum (ser. Megistacroloba). This hypothesis was supported on the basis of a number of features: 1) The morphology of S. raphanifolium is strikingly intermediate between its two putative parents, especially in the features of habit, leaves (Fig. 1), and flower shape (Table 1); 2) Solanum raphanifolium occurs in weedy disturbed habitats unlike the generally undisturbed habitats of its putative parents; 3) S. raphanifolium occurs in a restricted overlap zone between the two species in southern Peru (Fig. 1); and 4) Ugent (1970b) found many intermediate individuals in this overlap zone that he believed were F1 and later generation hybrids between S. canasense and S. megistacrolobum suggesting that hybridization was an ongoing process. This combination of morphological, ecological, distributional, and field evidence made this a well-documented a very reasonable hypothesis.

This study was initiated to test the S. raphanifolium hybridization origin hypothesis with chloroplast DNA (cpDNA) and 18S-25S nuclear ribosomal DNA (nrDNA) characters. Assuming relatively recent or even ongoing hybridization between the two putative parental species, the expectation is for the hybrid to possess an identical, or nearly identical, maternally inherited cpDNA pattern to one parent (Hosaka et al., 1984;
Corriereau and Coleman, 1988) and an additive biparentally inherited nrDNA pattern from both parents (Doyle et al., 1985; Doyle and Doyle, 1988; Rieseberg et al., 1988). If S. raphanifolium were not derived from recent diploid hybridization, a cpDNA analysis would place it with either of the other two species but exhibiting a number of autapomorphies, or perhaps even place it as a sister group to the other two species; the nrDNA pattern would not be expected to exhibit additivity.

MATERIALS AND METHODS

Plants.—Seeds of S. canasense (USDA Plant Inventory, PI, numbers 210035, 230511, 246533, 265863, 265864, 265875, 283074, 283080, 283084, 310940, 458375, 458377, 442696, 473345, 473346, 473347, 473355), S. meigistacrolorum (PI 210034, 310978, 435072, 458346, 458348, 473109, 473118, 473121, 473128, 473137, 473146, 473159, 473356, 473360, 473361, 498257, 498258, 498259, 498263, 500031), S. raphanifolium (PI 265862, 310953, 310998, 458382, 458406, 473370, 473465, 473466, 473502, 473526; intraspecific hybrids, female first, 246539 × 210048, 290944 × 246539) and S. toralapanum (195210, 458396, 472804, 472806, 472807, 472808, 473389, 498144, 498145, 498146), respectively (ingroup species); and of one accession each of S. bulbocastanum (PI 275184), S. ochranthum (PI 365919), and S. pinatisectum (PI 275320) (outgroup species) were obtained from the Inter-Regional Potato Introduction Project (IR-1; Hanneman and Bamberg, 1986). The S. canasense accessions were from Peru, Departments of Ayacucho, Cuzco and Puno; S. meigistacrolorum from Argentina, Departments of Jujuy and Salta, and Bolivia, Departments of Cochabamba, La Paz, and Potosí; S. raphanifolium from Peru, Department of Cuzco; and S. toralapanum from Argentina, Department of Salta, and from Bolivia, Department of Chuquisaca.
and Cochabamba; *S. bulbocastanum* from Mexico; *S. ochrantum* from Ecuador and *S. pinnatisectum* from Mexico. *Solanum raphanifolium*, PI 473506 is from Peru, not Bolivia as it appears in Hanneman and Bamberg (1986). *Solanum toralapanum* was included in this analysis because of its very close relationship to *S. megistacroclolum*. *Solanum toralapanum* has been considered to be conspecific with *S. megistacroclolum* (Ochoa, 1984), informally referred to as a variety of it (Johns et al., 1987), or as a closely related species (Hawkes and Hjerting, 1989; Hawkes, 1990). For the purposes of this paper, *S. megistacroclolum* will be included to discuss *S. toralapanum.*

DNA Isolation and Restriction-Site Comparison.—Five grams of fresh leaf tissue were collected from pooled leaf samples of one to eight plants per accession from two to six-month old plants. Preparations of total DNA were made following the procedure of Doyle and Doyle (1987) and purified over CsCl/ethidium bromide gradients. Restriction endonuclease digestions, agarose-gel electrophoresis, bidirectional transfer of DNA fragments from agarose gels to nylon filters, labeling of recombinant probes by nick-translation, filter hybridization, and autoradiography were conducted following the methods of Palmer (1986). Twenty endonucleases were used to examine cpDNA and nrDNA variation in *Solanum* (Bam HI, Ban I, Ban II, Bci I, Bgl II, Bst NI, Bst XI, Cla I, Dra I, Eco RI, Eco RV, Hae II, Hinc II, Hind III, Hph I, Nci I, Nsi I, Sst I, Ssp I, and Xba I). Membrane filters were probed with 12 Pst I and two Sal I clones representing nearly the entire chloroplast genome of *Petunia* (Sytmsa and Gottlieb, 1986a). One clone of *Lactuca* was used, representing the small single-copy region between the inverted repeats of the cpDNA molecule (Jansen and Palmer, 1987). For nrDNA restriction site variation, the 18S-25S nrDNA repeat from *Glycine max* (courtesy of E. Zimmer) was used to reprobe the filters used in the cpDNA analysis.

Data Analysis.—Restriction site divergence was quantified by the p values of Nei and Li (1979), where $p = \text{proportion of base substitutions per nucleotide position.}$ Restriction site data were analyzed using two parsimony approaches. Wagner parsimony, which weights equally convergent site gains and convergent site losses was performed using PAUP (version 2.4.1, D. Swofford, Illinois Natural History Survey, Urbana). The most parsimonious trees were sought (MULPARS option) with global branch swapping (SWAP = GLOBAL) and a consensus tree was constructed of equally parsimonious trees (CONTREE). Dollo parsimony (LeQuense, 1974; DeBry and Slade, 1985), which discriminates against convergent site gains or loss/gains and invokes instead additional convergent site losses or gain/losses, also was performed (PHYLIP, version 2.7). The trees were rooted by outgroup comparison with *S. ochrantum.* Although the outgroup relationships of *Solanum* sect. *Petota* are not fully resolved, Hawkes (1990) includes *S. ochrantum* in sect. *Petota* but in a distinct subsection (subsection *Estolonifera* Hawkes) separated from all of the other species here examined (subsection *Potatoe* G. Don). To provide further insights into outgroup structure, two additional species from subsection *Potatoe* were included in the analysis: *S. bulbocastanum* (ser. *Bulbocastana*) and *S. pinnatisectum* (ser. *Pinnatisecta*). These two diploid Mexican species are isolated by strong crossability barriers from the South American ingroup species and also are apparently relatively distantly related to them (Hawkes, 1958; Johnston and Hanneman, 1982; Hosaka et al., 1984).

RESULTS

Chloroplast DNA Analysis.—Approximately 650 restriction sites were identified in each *Solanum* accession for a total of 3,770 nucleotide base pairs in each chloroplast genome with an average size of 155 kb. About 2.4% of the *Solanum* chloroplast genome was sampled. The greatest genetic distance among the species was between *S. ochrantum* and the ingroup species ($p = 0.0095$). The greatest amount of interspecific

<table>
<thead>
<tr>
<th>Habit</th>
<th>Leaves</th>
<th>Corolla shape, color</th>
<th>Habitat</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. canasense</td>
<td>Tall, erect</td>
<td>Broadly rotate, light blue-purple.</td>
<td>Steep mountain slopes, in rocky or shrubby places, occasionally in field borders and roadsides.</td>
<td>Central to southern Peru.</td>
</tr>
<tr>
<td>S. raphanifolium</td>
<td>Decumbent, intermediate in dissection with 4-8 laterals and 0-6 interchanged; laterals sessile, often decurrent on petiole.</td>
<td>Pentagonal to semi-rotate, purple or violet.</td>
<td>Growing in disturbed areas with native and introduced weeds, among rocks, grass, or shrubs, often in cultivated fields.</td>
<td>2,900-4,100 m elev.</td>
</tr>
<tr>
<td>S. megistacroclolum</td>
<td>Low, rosette, simple to poorly dissected with 0-4 laterals and no interchanged; laterals highly decurrent on petiole.</td>
<td>Stellate to pentagonal-rotate, purple to blue-lilac.</td>
<td>In grassy areas in the altiplano.</td>
<td>3,500-4,450 m elev.</td>
</tr>
</tbody>
</table>

Table 1. Comparison of *Solanum canasense*, *S. raphanifolium*, and *S. megistacroclolum* (from Ochoa, 1962; Ugent, 1970a; Hawkes, 1990).
divergence within the ingroup species is found between S. megi
tacrolorum and S. raphanifolium (p = 0.0013, range = 0.0008–0.0021). Solanum canasense and S. megi
tacrolorum showed the lowest amount of inter-
specific cpDNA divergence within the ingroup species (mean p = 0.0007, range 0.0–0.0015). Considerable
intraspecific site variation was seen in both S. cana-
sense (0.0013, maximum values) and S. megi
tacrolorum (0.0015), the highest values of which approxi-
mated the average divergence between the ingroup species. Solanum raphanifolium, however, exhibited
insignificant levels of intraspecific variation (mean = 0.0003). Some deletions or insertions were seen in S.
ochranthum relative to the other species. Because of
uncertainty as to the nature and homology of these
deletions or insertions (Palmer et al., 1983; Sytsma
and Gottlieb, 1986a), these were not included in the phy-
logenetic analysis.

Out of a total of 67 site mutations, 46 occurred in
more than one accession and thus were phylogeneti-
cally informative. A full list of these mutations is avail-
able from the authors. No site mutations were observed
with Bgl II and Bst XI. Wagner parsimony analysis
produced over 100 equally parsimonious 75-step trees
with a consistency index of 0.77. The large number of
equally parsimonious trees resulted both from zero-length branches (unresolved nodes) and homoplasy within the ingroup.

A strict consensus tree (by PAUP) of 100 Wagner
trees (Fig. 2) clearly distinguishes S. bulbacatum, S.
pinnatifolium, and S. ochranthum. This tree also
unites all populations of S. canasense, S. megi
tacrolorum, and S. raphanifolium in an unresolved poly-
chotomy, but S. raphanifolium is the only ingroup spe-
cies distinguished as a monophyletic lineage, and is defined by four cpDNA mutations. Two of these four mutations, numbers in kilobases (Dra I, probe P8, 2.1 = 2.0 + [0.1]; Hae II, probes P8/P10, 9.5 = 7.0 + 2.5)
are possessed exclusively by all populations of S. ra-
phanifolium, the other two (Dra I, probe P3, 4.8 + 1.0
= 5.8, Eco RI, probes P16/S6, 5.8 = 4.1 + 1.7) are
shared by all populations of S. raphanifolium, S.
ochranthum, and two populations of S. megi
tacrolorum (Fig. 7B).

Nuclear Ribosomal DNA Analysis.—Restriction site
variation was screened for 16 of the 20 enzymes used
in the cpDNA analysis. The Dra I, Hae II, Hinc II,
and Nco I variations were too difficult to interpret due
to poor cutting or complex banding patterns and were
not used. The Bam HI, Bcl I, Cla I, Eco RI, Hind III,
Hph I, Nsi I, and Xba I patterns showed no intra-
or interspecific variability. Interspecific, but no intraspe-
cific variability was observed in the eight remaining enzymes, specifying 13 site mutations (list available from the authors). Fourteen equally parsimonious Wagner trees with a length of 14 steps and a consistency index of 0.93 were generated. A strict consensus tree (not shown)
exhibits an unresolved node for all species except S.
ochranthum, due to incompatibility involving two charac-
ters (Bgl II, site gain and Bst XI, site loss). In-
voking Dollo parsimony generates only three equally
parsimonious trees of length 14. These three Dollo
trees produce a consensus tree with an unresolved tri-
chotomy (Fig. 3). This tree thus is the best representa-
tion of relationships in the species based on nrDNA
using both Wagner and Dollo parsimony.

Discussion

Intraspecies Variation.—The intraspecific cpDNA
polymorphisms present within S. canasense, S. megi
tacrolorum, and S. raphanifolium parallels that found
in other wild potatoes (Hosaka and Hanneman, 1988)
and in other groups of plants (see Solitís and Solitís,
1989, for a summary). However, unlike the results re-
ported in Solitís and Solitís (1989), there is no geographical
compontent to the cpDNA variation that would
indicate its utility to elucidate phylogenetic relations-
ships in this group. Some individual polymorphic muta-
tions in these three species show a geographical com-
ponent, but the sum total of the cpDNA site mutations
shows no intraspecific geographical partitioning. Three
explanations could account for this pattern: 1) The
ancestral populations of these three species were highly
polyphyletic in cpDNA types; 2) Chance convergent
cpDNA mutations occurred among geographically sep-
errated populations; and 3) Matriarchal lineage sort-
ing (Neigel and Avise, 1986) where recently evolved
species may share a maternal chloroplast lineage with
another species and not with other conspecific popu-
lations. No examples of this phenomenon have yet
been fully documented in plants (Sytsma, 1990). It is
noteworthy that each species exhibits a single and dis-
tinctive nrDNA site pattern. Thus, accessions can be
unambiguously placed to species based on nrDNA, but
not cpDNA. The homogeneity within species of nrDNA
site mutations, but not length mutations, as opposed
to cpDNA, suggest that concerted nrDNA evolution
might have occurred within species (Zimmer et al.,
1980). Moreover, because morphology and nrDNA are
consistent indicators of species boundaries but cpDNA
is not, matriarchal lineage sorting of cpDNA may well
be responsible for these results.

Origin of Solanum raphanifolium.—Restriction
genetic analysis of cpDNA and nrDNA provide con-
cordant results in reexamining the putative hybrid or-
igin of S. raphanifolium. The cpDNA phylogeny (Fig.
2) indicates that S. raphanifolium is not of recent hy-
brid origin from the two putative parental species. Four
synapomorphies support the S. raphanifolium clade
distinct from the other two species. There are no
site differences between S. raphanifolium and either
putative parental species than there are between the
two putative parents. Genetic distances based on
cpDNA (p values) also support the highly divergent
status of S. raphanifolium, as S. canasense and S. me-
gistacrolorum are closer to each other than either is to
S. raphanifolium. The two shared mutations among all
populations of S. raphanifolium and two populations,
respectively, of S. megi
tacrolorum must be
viewed as convergent in light of their rare occurrence
in S. megi
tacrolorum and the absence in S. megi
tacrolorum of the other mutations distinguishing S.
raphanifolium.

The nrDNA tree (Fig. 3) also provides no support
for the hybridization hypothesis. The combination of
Wagner and Dollo parsimony indicates that S. cana-
sense and S. megi
tacrolorum (with S. raphanifolium) form a clade defined by a Bgl II site gain. Solanum raphanifolium represents a sister taxon to this clade
and is further defined by an autopomorphic Bam HI
site gain. Both the lack of the additivity in, and
the divergent nature of S. raphanifolium nrDNA, argue
against the recent diploid hybridization hypothesis of
S. raphanifolium.

Discounting hybridization as the cause for the morphological intermediacy of S. raphanifolium necessi-
tates other explanations for the origin of S. raphanifolium. The results in this study are unexpected not
only because they fail to support hybridization, but also because S. megistacrolobum and S. raphanifolium
are grouped in ser. Megistacroloba and S. canasense in ser. Tuberosa. One alternative hypothesis is that S.
raphanifolium represents the sister species to either S. canasense of S. megistacrolobum but exhibits mor-
phological convergence to the other species. The divergent cpDNA and nrDNA seen in S. raphanifolium
would suggest that this would be an unlikely scenario. A more likely hypothesis for the origin of S. raphanifo-
lium is that it is related to other Solanum species not here examined. In this case, the intermediate morpho-
logical traits (Table 1) of S. raphanifolium relative to its putative parents would be superficial and mislead-
ing. Of interest is that independent glycoalkaloid data (Johns and Osman, 1986) also suggest that S. raphanifolium may not be related to other members of Solanum ser. Megistacroloba.

It is possible, but unlikely, that S. raphanifolium is
an ancient hybrid between S. canasense and S. megis-
tacrolobum. This analysis fails to resolve the relation-
ships of these ingroup species to other Solanum species.
The relationship of *S. raphanifolium* to other *Solanum* species will require a much wider phylogenetic analysis. Because one-half of all of the potato species are believed to occur in Peru, with a concentration in southern Peru, it was beyond the scope of this study to conduct these analyses. If *S. raphanifolium* resulted from ancient hybridization, however, it is curious why its cpDNA would have evolved at a much more rapid rate relative to its parents. Additional evidence on the hybrid origin of *S. raphanifolium* could be provided by the construction of artificial interspecific hybrids and a comparison of morphology and nuclear DNA. Hawkes (1990) alludes to unpublished evidence concerning a morphological comparison of artificial hybrids that fails to support this hybridization hypothesis. Wider cpDNA surveys of additional *Solanum* species, artificial hybridizations, and additional nuclear DNA analyses are in progress.

Hybridization and its various effects have long been accepted to be a dominant evolutionary force in *Solanum* sect. *Petota* (Hawkes, 1958, 1962; Ugent, 1970a). These hypotheses often have been supported by extensive and carefully gathered data from field observations, reconstruction of artificial hybrids (e.g., Astley and Hawkes, 1979; Cribb and Hawkes, 1986), and extensive morphometric analyses, utilizing both morphological and chemical characters (e.g., Johns et al., 1987). No phylogenetic study in this group has benefited, however, from detailed cladistic studies such as that of Whalen et al. (1981) in *Solanum* sect. *Lasioscarpa*. In view of the results obtained here with *S. raphanifolium*, the other hybridization hypotheses should be subjected to reinvestigation by both molecular and morphological cladistic analyses. The striking morphological intermediacy, plus the distributional and ecological data (Table 1, Fig. 1), made the diploid hybridization origin hypothesis of *S. raphanifolium* most reasonable. The myriad of other hybridization hypotheses in *Solanum* sect. *Petota* may vary well hold up under the rigorous of molecular reexamination, as they have in other plant groups, but must currently be suspect in light of these surprising results from *S. raphanifolium*.

The results obtained in this study build upon a growing body of evidence for plants that certain analyses using morphology sometimes can yield estimates of evolutionary relationships differing from those based on molecular studies (Systma, 1990). Molecular phylogenetic analyses, which can generate large data sets, have shown that concordance between morphological and molecular data sets is the rule. However, a number of examples of discordant phylogenies have been discovered (Palmer et al., 1988; Systma and Smith, 1988; Systma, 1990). In the Asteraceae, Jansen and Palmer (1988) pointed out the paraphyletic status of some currently accepted tribes; Rieseberg et al. (1988) demonstrated the nonhybrid status of some races of *Heliantus bolanderi* previously thought to be of hybrid origin; and Schilling and Jansen (1989) demonstrated the paraphyletic status of the large genus *Viguiera*. In the Onagraceae, Systma and Gottlieb (1986b) demonstrated the quite unexpected inclusion of the distinctive *Heterogaura* within *Clarkia*. In the Orchidaceae, Palmer et al. (1988) discovered the paraphyletic status of *Oncidium*. Potatoes, especially, represent a group with extensive phenotypic plasticity (Correll, 1962; Hawkes, 1990) that may make the utility of morphological characters for phylogenetic and systematic inference difficult, at best.

ACKNOWLEDGMENTS

We thank A. Nicolaus for technical assistance and K. Elliot for artwork. Research was supported by a grant from the National Science Foundation to K.J.S. (BSR-16573).

LITERATURE CITED

Andersen, E. 1949. Intrgressive Hybridization. Wiley, N.Y.

IS SINGLE-GENE SPECIATION POSSIBLE?

H. ALLEN ORR

Department of Ecology and Evolution, University of Chicago,
1103 E. 57th Street, Chicago, IL 60637 USA

Key words.—Partula, reproductive isolation, speciation.

Received February 1, 1990. Accepted September 4, 1990.

It is often claimed that speciation cannot result from changes at a single gene (Dobzhansky, 1937 pp. 255–256; Muller, 1940, 1942). The reason is that any mutation causing complete reproductive isolation from the wild type is strongly selected against: if a mutation causes postmating isolation then the first mutant individual represents an inviable or sterile hybrid genotype, and the mutant allele is immediately lost. Mutations causing premating isolation also have a trivially small chance of becoming fixed: a dominant mutation will be lost in a single generation because the first mutant individual has no compatible mate. Although a recessive mutation causing premating isolation might rarely drift to some intermediate frequency, the mutant allele will suffer a tremendous selective disadvantage once the first homozygote appears: these homoygotes will be very rare in the population and thus frequently will go unmutated.

For these reasons, Dobzhansky (1937) and Muller (1940, 1942) concluded that speciation must involve two or more loci. Both introduced two-locus, epistatic models of speciation, showing how the mutations that ultimately cause reproductive isolation could be easily fixed within geographically isolated populations of initial genotype aa bb: mutant allele A sweeps through